Ranking and Scoring Using Empirical Risk Minimization
نویسندگان
چکیده
A general model is proposed for studying ranking problems. We investigate learning methods based on empirical minimization of the natural estimates of the ranking risk. The empirical estimates are of the form of a U -statistic. Inequalities from the theory of U -statistics and U processes are used to obtain performance bounds for the empirical risk minimizers. Convex risk minimization methods are also studied to give a theoretical framework for ranking algorithms based on boosting and support vector machines. Just like in binary classification, fast rates of convergence are achieved under certain noise assumption. General sufficient conditions are proposed in several special cases that guarantee fast rates of convergence.
منابع مشابه
Sparse Support Vector Infinite Push
In this paper, we address the problem of embedded feature selection for ranking on top of the list problems. We pose this problem as a regularized empirical risk minimization with p-norm push loss function (p = ∞) and sparsity inducing regularizers. We leverage the issues related to this challenging optimization problem by considering an alternating direction method of multipliers algorithm whi...
متن کاملOverlaying classifiers: a practical approach for optimal ranking
ROC curves are one of the most widely used displays to evaluate performance of scoring functions. In the paper, we propose a statistical method for directly optimizing the ROC curve. The target is known to be the regression function up to an increasing transformation and this boils down to recovering the level sets of the latter. We propose to use classifiers obtained by empirical risk minimiza...
متن کاملRanking the Best Instances
We formulate a local form of the bipartite ranking problem where the goal is to focus on the best instances. We propose a methodology based on the construction of real-valued scoring functions. We study empirical risk minimization of dedicated statistics which involve empirical quantiles of the scores. We first state the problem of finding the best instances which can be cast as a classificatio...
متن کاملPredicting Consumer Behavior in Commerce Search
Traditional approaches to ranking in web search follow the paradigm of rank-by-score: a learned function gives each query-URL combination an absolute score and URLs are ranked according to this score. This paradigm ensures that if the score of one URL is better than another then one will always be ranked higher than the other. Scoring contradicts prior work in behavioral economics that preferen...
متن کاملPredicting Preference Flips in Commerce Search
Traditional approaches to ranking in web search follow the paradigm of rank-by-score: a learned function gives each query-URL combination an absolute score and URLs are ranked according to this score. This paradigm ensures that if the score of one URL is better than another then one will always be ranked higher than the other. Scoring contradicts prior work in behavioral economics that preferen...
متن کامل